Sabtu, 08 Desember 2012

SIRKULSI DARAH PADA JANIN



SIRKULASI DARAH PADA JANIN
BY : MUHAMMAD SUDARYANTO



A.Latar Belakang

Peredaran darah janin berbeda dengan orang dewasa,hal ini dikarenakan, pada janin organ vital untuk metabolisme masih belum berfungsi. Organ tersebut adalah paru janin dan alat gastrointestinal yang seluruhnya diganti oleh plasenta.Dalam sirkulasi darah janin ini diperlukan beberapa faktor untuk berlansungnya sirkulasi darah pada janin diantaranya adalah foramen ovale, duktus arteriosus bothalii, duktus venousus aranthii, vena umbilikalis, arteri umbilikalis dan plasenta .
Namun setelah janin lahir sirkulasi darah janin akan berubaha pada saat bayi lahir dan menangis,hal ini akan dapat meberikan perubahan pada organ paru dimana paru-paru mulai berkembang dan aliran darah akan berubah pada sirkulsi pada orang dewasa.

B. Tujuan

• Untuk mengetahui bagaimana sirkulasi darah pada fetus sebenarnya
• Agar dapat mengetahui apa saja faktor yang mempengaruhui sikulsi darah pada janin
• Untuk mengetahui perubahan yang terjadi pada sirkulasi darah fetus pada ssat fetus dilahirkan

C. Rumusan Masalah

• Proses sirkulasi darah fetus
• Faktor-faktor yang Mentukan Sirkulasi Darah Janin
• Sirkulasi Darah Janin Setelah Lahir



BAB II
PEMBAHASAN

A. Sirkulasi Darah Janin

Sirkulasi darah janin dalam rahim tidak sama dengan sirkulasi darah pada bayi, anak dan orang dewasa. Pada janin organ vital untuk metabolisme masih belum berfungsi. Organ tersebut adalah paru janin dan alat gastrointestinal yang seluruhnya diganti oleh plasenta . Dengan tidak berfungsinya mekanisme tersebut,harus terdapat mekanisme yang berfungsi sebagaialat ganti untuk :

1. Paru Janin
Terjadi pergantian O2 dengan CO2 melalui plasenta sehinggga paru-paru tidak memerlukan aliran darah

2. Gastro intestinal
Gastro ientestinal yang belum berfungsi sebagaia alat penyerapan nutrisi,maka pembuluh darahnaya belum berfunngsi, kecuali pada janin digunakan untuk tumbuh kembang sendiri.



Perbedaan antara sirkulasi darah janin intra uterine dan ekstra uterine
antara lain adalah :

1. Aliran darah arteri pulmonalis dari ventrikel kanan,darahnya akan dialirkan menuju aorta melalui erteria duktus Bothaki
2. Drah dari vena umbilikal melalui liver langsung menuju vena cava inferior melalui duktus venous aranthii
3. Darah dari vena cava inferior menuju jantung sebagian langsung menuju atrium kiri melalui foramen ovale
4. sebagian menuju ventrikel kiri dan selanjutnya ke aorta sebagian besar digunakan untuk konsumsi O2 dan nutrisi susunan saraf pusat jantung .




https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEipGTEjppK-qiz2SYVx8INNFfLh2BuajooKdIdcqWXgmz55Ev3hNLcoeP7cCNMmqLtOtMFQz4CbOHgCjkpZc2IsRpCYSq4InoTFzoesoUOj0rabiXi07HPjyuTLBfHb0rfCY3D357CVbtY/s320/kehamilan-minggu-20.jpg

B. Faktor-faktor yang Mentukan Sirkulasi Darah Janin

a. Foramen Ovale
• Lubang antara atrum kanan dan atrium kiri
• Aliran daranhnya : atrium kanan kiri
• Setelah janin lahir akan menutup
b. Duktus Arteriosus Bothali
• Pembuluh yang menghubungkan arteri pulmonalis dengan aorta
• Menutup setelah lahir
c. Duktus venousus Aranthii
• Pembuluh yang berada dalam hepar menuju vena cava inferior
• Menutup setelah lahir
d. Vena Umbilcalis
• Berjumlah dua buah
• Membawa zat makanan dan O2 dari sirkulasi darh ibu ( plasenta ) ke peredaran darh janin
e. Arteri Umbilicalis
• Berjumlah dua buah
• Membawa sisa zat makanan dan CO2 dari janin ke sirkulasi darah ibu
• Pembuluh darah yang menghubungkan vena umbilikalis dengan vena cava inferior
f. Palsenta
• Jaringan yang menempel pada endometrium
• Tempat pertukaran antara darah janin dengan darah ibu .


C. Proses Sirkulasi Darah Janin ( Fetus )

a. Darah janin dialirkan ke plasenta melalui aa umbilicaliesyang membawa bahan makanan ang berasal dari ibu .
b. Darah ini akan masuk ke badan janin melalui vena umbilikacalis yang bercabang dua setelah memasuki dinding perut janin .
c. Cabang yang kecil akan bersatu dengan vena porta,darahnya akan beredar dalam hati dan kemudian dianggkut melalui vena cava hepatica kedalam vena cava inferior. Dan cabang satu lagi ductus venusus aranthii,akhirnya masuk ke vena cava inferior. Sebagian O2 dalam darah vena umbilikalis akan direabsorbsi sehingga konsentrasi O2 menurun .
d. Vena cava inferior, langsung masuk ke atrium kanan, darah ini merupakan darah yang berkonsentrasi tinggi nutrisi dan O2 yang sebahagian menuju ventrikel kanan dan sebahagian besar menuju atrium kiri melalui foramen ovale.
e. Dari ventrikel kanan masuk ke paru-paru,tetapi karena paru-paru belum berkembang maka darah yang tredapat pada arteri pulmonalis dialirkan menuju aorta melalui ductus arteriosus Bothalli. Darah yang ke paru-paru bukan untuk pertukaran gas tetapi untuk memberi makanan kepada paru-paru yang sedang tumbuh.
f. Darah ynag berda di aorta disebarkan ke alat-alat badan,tetapi sebelumnya darah menuju ke aa.hypogastricae ( cabang dari arteri iliaca comunis ) lalu ke aa. Umbilicalles dan selanjutnya ke plasenta.
g. Selanjutnya sirkulasi darah janin akan berulang kembali. Menerima nutrisi dan O2 dari plasenta melalui ductus venousus aranthii, menuju vena cava inferior yang kaya akan O2 dan nutrisi .




https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhbd9Q3X2GdthdQCI9EoiKe7hxREFnwoCjXna-NCKAhlYT5vsywfrRzKHVkTIB9HoUiPY3ebGeEL-x-BRMwwletmKc1rWzSkrzNOjEpOy54mQTrqwc2SwYEpUZpDyKQM_sPrWps3ey0yyw/s320/sirkulasi+janin.jpg

Gambar Sirkulasi Darah Janin



D. Sirkulasi Darah Janin Setelah Lahir

Pada saat persalinan sebahagian besar bayi langsung menangis maka akan terjadi perubahan besar terhadap sirkulasi darah,diantaranya adalah :

1. Paru-paru berkembang dengan sempurna dan langsung dapat berfungsi untuk pertukaran O2 dan CO2. Akibat perkembangan paru-paru terjadi perubahan sirkulasi darah diantaranya adalah :
a. Arteri pulmonalis kini langsung mengalirkan darah ke paru sehingga ductus arteriosus Bothalli akan menutup .
b. Perkembangan paru-paru menyebabkan tekanan negatif pada atrium kiri,karena drah diserahkan langsung oleh ventrikel kanan dan dialirkan menuju paru-paru yang telah berfungsi
c. Akibat tekanan negatif pada atrium kanan, foramen ovale akan menutup dengan sendirinya,dan tidak lagi menjadi tempat aliran darah menuju atrium kiri.
2. Pemotongan Tali Pusat
a. Tali pusat di potong setelah bayi menangis dengan nyaring sehingga akan menambah jumlah darah bayi sekitar 50 % .
b. Dengan dilkaukannya pemotongan tali pusat berarti perubahan sirkulasi pada bayi telah berubah menjadi sirkulasi orang dewasa.


BAB III
PENUTUP

A. Kesimpulan

Peredaran darah janin berbeda dengan orang dewasa,hal ini dikarenakan, pada janin organ vital untuk metabolisme masih belum berfungsi. Organ tersebut adalah paru janin dan alat gastrointestinal yang seluruhnya diganti oleh plasenta.Dalam sirkulasi darah janin ini diperlukan beberapa faktor untuk berlansungnya sirkulasi darah pada janin diantaranya adalah
• foramen ovale
• duktus arteriosus bothalii
• duktus venousus aranthii
• vena umbilikalis
• arteri umbilikalis dan plasenta
Jalur peredaran darah janin dapat digambarkan sebagai berikut :
Plasenta - vena umbilicalis -hati - ductus venosus /vena hepatica - vena cava inferior - atrium kanan - foramen oval - Atrium kiri - ventrikel kiri - aorta - kepala, tangan/ abdomen, thorax, kaki - arteri umbilicalis - plasenta.
Ini aliran darah yg kaya dengan nutrisi dan oksigen yang berasal dari sirkulasi darah ibu

Namun setelah janin lahir sirkulasi darah janin akan berubaha pada saat bayi lahir dan menangis,hal ini akan dapat meberikan perubahan pada organ paru dimana paru-paru mulai berkembang dan aliran darah akan berubah pada sirkulsi darah seperti orang dewasa.

DAFTAR PUSTAKA
Manuaba I.BG.2007.Pengantar Kuliah Obstetri. Jakarta : Penerbit Buku Kedokteran

anatomi fisiologi sistim imun



ANATOMI DAN FISIOLOGI SISTEM IMUN


DISUSUN OLEH :
ADELIA REGITA SUBAGYO
AMALIA ANNISA
ANIK FITRIA
FITRI MARLISA PUTRI
DESTI HAYANA
MUHAMMAD SUDARYANTO
NURUL AYU SEPTIANTI
 








SEKOLAH TINGGI ILMU KESEHATAN
PERGURUAN TINGGI MITRA LAMPUNG
2011/2012
A.       Pengertian Sistem Imun

        Sistem Imun (bahasa Inggris: immune system) adalah sistem pertahanan manusia sebagai perlindungan terhadap infeksi dari makromolekul asing atau serangan organisme, termasuk virus, bakteri, protozoa dan parasit. Sistem kekebalan juga berperan dalam perlawanan terhadap protein tubuh dan molekul lain seperti yang terjadi pada autoimunitas, dan melawan sel yang teraberasi menjadi tumor. (Wikipedia.com)
 Sistem kekebalan atau sistem imun adalah sistem perlindungan pengaruh luar biologis yang dilakukan oleh sel dan organ khusus pada suatu organisme. Jika sistem kekebalan bekerja dengan benar, sistem ini akan melindungi tubuh terhadap infeksi bakteri dan virus, serta menghancurkan sel kanker dan zat asing lain dalam tubuh. Jika sistem
kekebalan melemah, kemampuannya melindungi tubuh juga berkurang, sehingga menyebabkan patogen, termasuk virus yang menyebabkan demam dan flu, dapat berkembang dalam tubuh. Sistem kekebalan juga memberikan pengawasan terhadap sel tumor, dan terhambatnya sistem ini juga telah dilaporkan meningkatkan resiko terkena beberapa jenis kanker.

Letak Sistem Imun
 










B.       Respon Sistem Imun
Respons imun adalah respons tubuh berupa suatu urutan kejadian yang kompleksterhadap antigen, untuk mengeliminasi antigen tersebut. Respons imun ini dapat melibatkan berbagai macam sel dan protein, terutama sel makrofag, sel limfosit, komplemen, dansitokin yang saling berinteraksi secara kompleks. Mekanisme pertahanan tubuh terdiri atas mekanisme pertahanan non spesifik dan mekanisme pertahanan spesifik.
Substansi asing yang bertemu dengan system itu bekerja sebagai antigen, anti melawan, + genin menghasilkan. Contohnya jika terjadi suatu substansi terjadi suatu respon dari tuan rumah, respon ini dapat selular, humoral atau keduanya. Antigen dapat utuh seperti sel bakteri sel tumor atau berupa makro molekul, seperti protein, polisakarida atau nucleoprotein. Pada keadaan apa saja spesitas respon imun secara relatif dikendalikan oleh pengaruh molekuler kecil dari antigendetenniminan antigenic untuk protein dan polisakarida, determinan antigenic terdiri atas empat sampai enam asam amino atau satuan monosa karida. Jika komplek antigen Yang memiliki banyak determinan misalnya sel bakteri akan membangkitkan satu spectrum respon humoral dan selular. Antibodi, disebut juga imunoglobulin adalah glikkoprotein plasma yang  bersirkulasi dan dapat berinteraksi secara spesifik dengan determinan antigenic yang merangsang pembentukan antibody, antibody disekresikan oleh sel plasma yang terbentuk melalui proliferasi dan diferensiasi limfosit B. Pada manusia ditemukan lima kelas imunoglobulin, Ig.G, terdiri dari dua rantai ringan yang identik dan dua rantai berat yang identik diikat oleh ikatan disulfida dan tekanan non kovalen. Ig G merupakan kelas yang paling banyak jumlahnya, 75 % dari imunoglobulin serum IgG bertindak sebagai suatu model bagi kelas-kelas yang lain.
Adjuvant  àSenyawa yang jika dicampur dengan imunogen à  meningkatkan respon imun terhadap imunogen : BCG,  FCA, LPS, suspensi AL(OH)3
Imunogen   à senyawa yang mampu menginduksi respon imun
Hapten:  Molekul kecil yang tidak mampu menginduksi respon imun dalam keadaan murni, namun bila berkonyugasi dengan protein tertentu (carrier) atau senyawa BM besar à dapat menginduksi respon imun.
Epitop atau Antigenik Determinan :Unit terkecil dari suatu antigen yang mampu berikatan dengan antibodi atau dengan reseptor spesifik pada limfosit

C.       Fungsi dari Sistem Imun

·         Sumsum
Semua sel sistem kekebalan tubuh berasal dari sel-sel induk dalam sumsum tulang. Sumsum tulang adalah tempat asal sel darah merah, sel darah putih (termasuk limfosit dan makrofag) dan platelet. Sel-sel dari sistem kekebalan tubuh juga terdapat di tempat lain.
·         Timus
Dalam kelenjar timus sel-sel limfoid mengalami proses pematangan sebelum lepas ke dalam sirkulasi. Proses ini memungkinkan sel T untuk mengembangkan atribut penting yang dikenal sebagai toleransi diri.
·         Getah bening
Kelenjar getah bening berbentuk kacang kecil terbaring di sepanjang perjalanan limfatik. Terkumpul dalam situs tertentu seperti leher, axillae, selangkangan dan para-aorta daerah. Pengetahuan tentang situs kelenjar getah bening yang penting dalam pemeriksaan fisik pasien.
·         Mukosa jaringan limfoid terkait (MALT)
Di samping  jaringan limfoid berkonsentrasi dalam kelenjar getah bening dan limpa, jaringan limfoid juga ditemukan di tempat lain, terutama saluran pencernaan, saluran pernafasan dan saluran urogenital.

D.       Mekanisme Pertahanan

1.      Mekanisme Pertahanan Non Spesifik

Dilihat dari caranya diperoleh, mekanisme pertahanan non spesifik disebut juga respons imun alamiah. Yang  merupakan  mekanisme pertahanan non spesifik tubuh
kita adalah kulit dengan kelenjarnya, lapisan mukosa dengan enzimnya, serta kelenjar lain dengan enzimnya seperti kelenjar air mata.
Demikian pula sel fagosit (sel makrofag, monosit, polimorfonuklear) dan komplemen merupakan komponen mekanisme pertahanan non spesifik.

2.      Mekanisme Pertahanan Spesifik

         Bila pertahanan non spesifik belum dapat mengatasi invasi mikroorganisme maka imunitas spesifik akan terangsang. Mekanisme pertahanan spesifik adalah mekanisme pertahanan yang diperankan oleh sel limfosit, dengan atau tanpa bantuan komponen sistem imun lainnya seperti sel makrofag dan komplemen.
         Dilihat dari caranya diperoleh maka mekanisme  pertahanan spesifik disebut juga respons imun didapat.  Mekanisme Pertahanan Spesifik  (Imunitas Humoral dan Selular)
          Imunitas humoral adalah imunitas yang diperankan oleh sel limfosit B dengan atau tanpa bantuan sel imunokompeten lainnya. Tugas sel B akan dilaksanakan oleh
imunoglobulin yang disekresi oleh sel plasma. Terdapat lima kelas imunoglobulin yang kita kenal, yaitu IgM, IgG, IgA, IgD, dan IgE.
          Imunitas selular didefinisikan sebagai suatu respons imun terhadap antigen yang
diperankan oleh limfosit T dengan atau tanpa bantuan komponen sistem imun lainnya.

Antibodi (Immunoglobulin)
Antibodi (bahasa Inggris:antibody,  gamma globulin)adalah glikoprotein dengan struktur tertentu yang disekresi dari pencerap limfosit-B yang telah teraktivasi menjadi sel plasma, sebagai respon dari antigen tertentu dan reaktif terhadap antigen tersebut.

Pembagian Immunglobulin :
·         Antibodi A (bahasa Inggris: Immunoglobulin A, IgA) adalah antibodi yang memainkan peran penting dalam imunitas mukosis (en:mucosal immune). IgA banyak ditemukan pada bagian sekresi tubuh (liur, mukus, air mata, kolostrum dan susu) sebagai sIgA (en:secretoryIgA) dalam perlindungan permukaan organ tubuh yang terpapar dengan mencegah penempelan bakteri dan virus ke membran mukosa. Kontribusi fragmen konstan sIgA dengan ikatan komponen mukus memungkinkan pengikatan mikroba.

·         Antibodi D (bahasa Inggris: Immunoglobulin D, IgD) adalah sebuah monomer dengan fragmen yang dapat mengikat 2 epitop. IgD ditemukan pada permukaan pencerap sel B bersama dengan IgM atau sIga, tempat IgD dapat mengendalikan aktivasi dan supresi sel B. IgD berperan dalam mengendalikan produksi autoantibodi sel B. Rasio serum IgD hanya sekitar 0,2%.


·         Antibodi E (bahasa Inggris: antibody E, immunoglobulin E, IgE) adalah jenis antibodi yang hanya dapat ditemukan pada mamalia. IgE memiliki peran yang besar pada alergi terutama pada hipersensitivitas tipe 1. IgE juga tersirat dalam sistem kekebalan yang merespon cacing parasit (helminth) seperti Schistosoma mansoni, Trichinella spiralis, dan Fasciola hepatica,  serta terhadap parasit protozoa tertentu sepertiPlasmodium  falciparum, dan artropoda.

·         Antibodi G (bahasa Inggris: Immunoglobulin G, IgG) adalah antibodi monomeris yang terbentuk dari dua rantai berat dan rantai ringan , yang saling mengikat dengan ikatan disulfida, dan mempunyai dua fragmen antigen-binding. Populasi IgG paling tinggi dalam tubuh dan terdistribusi cukup merata di dalam darah dan cairan tubuh dengan rasio serum sekitar 75% pada manusia dan waktu paruh 7 hingga 23 hari bergantung pada sub-tipe.

·         Antibodi M (bahasa Inggris: Immunoglobulin M, IgM,  macroglobulin) adalah antibodi dasar yang berada pada plasma B. Dengan rasio serum 13%, IgM merupakan antibodi dengan ukuran paling besar, berbentuk pentameris 10 area epitop pengikat, dan teredar segera setelah tubuh terpapar antigen sebagai respon imunitas awal (en:primary immune response) pada rentang waktu paruh sekitar 5 hari. Bentuk  monomeris dari IgM dapat ditemukan pada permukaan limfosit- B dan reseptor sel-B. IgM adalah antibodi pertama yang tercetus pada 20 minggu pertama masa janin kehidupan seorang manusia dan berkembang secara fitogenetik (en:phylogenetic). Fragmen konstan IgM adalah bagian yang menggerakkan lintasan komplemen klasik. 


Komponen Sistem Imun Spesifik
·      Barier Sel Epitel
Sel epitel yang utuh merupakan barier fisik terhadap mikroba dari lingkungan dan menghasilkan peptida yang berfungsi sebagai antibodi natural. Didalam sel epitel barier juga terdapat sel limfosit T dan B, tetapi diversitasnya lebih rendah daripada limfosit T dan B pada sistem imun spesifik. Sel T limfosit intraepitel akan menghasilkan sitokin, mengaktifkan fagositosis dan selanjutnya melisiskan mikroorganisme. Sedangkan sel B limfosit intraepitel akan menghasilkan IG M.
·      Neutrofil dan Makrofag
Ketika terdapat mikroba dalam tubuh, komponen pertama yang bekerja adalah neutrofil dan makrofag dengan cara ingesti dan penghancuran terhadap mikroba tersebut. Hal ini di karenakan makrofag dan neutrofil mempunyai reseptor di permukaannya yang bisa mengenali bahan intraselular (DNA), endotoxin dan lipopolisakarida pada mikroba yang selanjutnya mengaktifkan aktifitas antimikroba dan sekresi sitokin.
·      NK Sel
NK sel mampu mengenali virus dan komponel internal mikroba. NK sel di aktifasi oleh adanya antibodi yang melingkupi sel yang terinfeksi virus, bahan intrasel mikroba dan segala jenis sel yang tidak mempunyai MCH class I. Selanjutnya NK sel akan menghasilkan porifrin dan granenzim untuk merangsang tterjadinya apoptosis.



DAFTAR PUSTAKA

SUMBER : http://www.scribd.com/doc/29262461/Sistem-Imun-Dan-Hematologi
Baratawijaya, karnen,.1996. Immunologi Dasar. Jakarta : gaya baru .
Goodman JW. The Immune Response. In: Stites DP, Terr AI eds. Basic and Clinical Immunology, 8 ed. Connecticut: Prentice Hall Int. Inc, 1994: 40-9

Kamis, 15 November 2012

FISIOLOGO KARDIOVASULAR


BY: MUHAMMAD SUDARYANTO


Jantung
Jantung merupakan organ muskular berongga yang bentuknya mirip piramid dan terletak di dalam perikardium di mediastinum. Jantung memiliki tiga permukaan : facies sternocostalis, diaphragmatica, dan basis cordis. Jantung dibagi oleh septa vertikal menjadi empat ruang: atrium dextrum, atrium sinistrum, ventriculus dexter, dan ventriculus sinister.

Atrium dextrum terdiri atas rongga utama dan sebuah kantong kecil, auricula. Bagian atrium di anterior berdinding kasar atau trabekulasi oleh karena tersusun atas berkas serabut-serabut otot, musculi pectinati, yang berjalan melalui crista terminalis ke auricula dextra. Pada atrium dextrum bermuara vena cava superior et inferior, sinus coronarius, dan vena cordis minimae.
Ostium atrioventriculare dextrum terletak anterior terhadap muara vena cava inferior dan dilindungi valva tricuspidalis. Pada atrium dextrum juga terdapat septum interatriale yang memisahkan kedua atrium. Pada septum inilah terdapat fossa ovalis yang merupakan obliterasi dari foramen ovale saat masih janin. (Snell, 2006)

Ventriculus dexter berhubungan dengan atrium dextrum melalui ostium atrioventriculare dextrum dan dengan truncus pulmonalis melalui ostium trunci pulmonalis. Sewaktu mendekati trunci pulmonalis rongga berubah seperti corong yang dinamakan infundibulum. Dinding ventrikel dexter jauh lebih tebal dibangding atrium karena ada trabecula carnae. Trabecula ini terdiri atas tiga jenis: mm. papillares, trabecula septomarginalis (berisi bundle hiss), dan rigi yang menonjol. Mm. papillares dengan valva tricupidalis dihubungkan oleh tali fibrosa yang disebut chorda tendinea. (Snell, 2006)

Atrium sinistrum memiliki dinding yang paling tipis diantara seluruh jantung. Empat vena pulmonales, dua dari masing-masing paru bermuara pada dinding posterior dan tidak memiliki katup. Ostium atrioventricularis sinistrum dilindungi oleh valva mitralis. (Snell, 2006)
Ventriculus sinister berhubungan dengan atrium sinistrum melalui ostium atrio-ventricularis yang dilindungi valva mitralis dan aorta melalui ostium aortae yang dilindungi valva semilunaris aorta. Dindingnya paling tebal diantara seluruh jantung. Terdapat trabecula carnae yang berkembang dengan baik, dua buah mm. papillares yang besar, tapi tidak terdapat trabecula septomarginalis. (Snell, 2006)

Pembuluh Darah
Ada tiga macam pembuluh darah: arteria, vena, dan kapiler. Arteria membawa darah dari jantung dan mendistribusikannya ke seluruh jaringan tubuh melalui cabang-cabangnya. Arteri yang kecil disebut arteriola, persatuan cabang-cabang disebut anastomosis. Vena adalah pembuluh yang membawa darah kembali ke jantung; banyak diantaranya yang mempunyai katup. Vena yang terkecil disebut venula, vena yang lebih besar atau muara-muaranya, bergabung membentuk vena yang lebih besar lagi, yang biasanya membentuk satu hubungan dengan yang lain menjadi plexus venosus. Vena yang keluar dari gastrointestinal tidak langsung menuju ke jantung tetapi bersatu membentuk vena porta. Kapiler adalah pembuluh yang sangat kecil dan menghubungkan arteriola dengan venula. (Snell, 2006) 

JANTUNG DAN EKG



By:MUHAMMAD SUDARYANTO

BAB I
Anatomi dan Fisiologi Jantung
Jantung berukuran sekitar satu kepalan tangan dan terletak di dalam dada, batas kanannya tepat pada sternum kanan dan apeksnya pada ruang intercostalis kelima kiri pada linea mid clavicular. Batas atas jantung terdapat pembuluh darah besar (aorta, truncus pulmonalis, dll); bagian bawah terdapat diafragma; batas belakang terdapat aorta descendens, oesophagus, dan columna vertebralis; sedangkan di setiap sisi jantung adalah paru.
Atrium Kanan
Atrium kanan berada pada bagian kanan jantung dan terletak sebagian besar di belakang sternum. Darah memasuki atrium kanan melalui :
o Vena cava superior pada ujung atasnya
o Vena cava inferior pada ujung bawahnya
o Sinus coronarius (vena kecil yang mengalirkan darah dari jantung sendiri)
Auricula dextra adalah penonjolan runcing kecil dari atrium, terletak pada bagian depan pangkal aorta dan arteria pulmonalis. Pada sisi kiri atrium lubang atrioventrikular kanan membuka ke dalam ventrikel kanan.
Ventrikel Kanan
Ventrikel kanan adalah ruang berdinding tebal yang membentuk sebagian besar sisi depan jantung. Valva atrioventricular dextra (tricuspidalis) mengelilingi lubang atrioventrikular kanan, pada sisi ventrikel. Katup ini, seperti katup jantung lain, terbentuk dari selapis tipis jaringan fibrosa yang ditutupi pada setiap sisinya oleh endocardium. Katup trikuspidalis terdiri dari tiga daun katup. Basis setiap daun katup melekat pada tepi lubang. Tepi bebas setiap daun katup melekat pada chordae tendineae (tali jaringan ikat tipis) pada penonjolan kecil jaringan otot yang keluar dari myocardium dan menonjol ke dalam ventrikel. Lubang pulmonalis ke dalam arteria pulmonalis berada pada ujung atas ventrikel dan dikelilingi oleh valva pulmonalis, terdiri dari tiga daun katup semilunaris.
Atrium Kiri
Atrium kiri adalah ruang berdinding tipis yang terletak pada bagian berlakang jantung. Dua vena pulmonalis memasuki atrium kiri pada tiap sisi, membawa darah dari paru. Atrium membuka ke bawah ke dalam ventrikel kiri melalui lubang atrioventrikular. Auricula sinistra adalah penonjolan runcing kecil dari atrium, terletak pada sisi kiri pangkal aorta.
Ventrikel Kiri
Ventrikel kiri adalah ruang berdinding tebal pada bagian kiri dan belakang jantung. Dindingnya sekitar tiga kali lebih tebal daripada ventrikel kanan. Valva atrioventrikular sinistra (mitralis) mengelilingi lubang atrioventrikular kiri pada bagian samping ventrikel, katup ini memiliki dua daun katup mendapat nama yang sama dengan topi (mitre uskup), tepinya melekat pada chordae tendineae, yang melekat pada penonjolan kerucut myocardium dinding ventrikel. Lubang aorta membuka dari ujung atas ventrikel ke dalam aorta dan dikelilingi oleh ketiga daun katup aorta, sama dengan katup pulmonalis.
Myocardium
Myocardium membentuk bagian terbesar dinding jantung. Myocardium tersusun dari serat – serat otot jantung, yang bersifat lurik dan saling berhubungan satu sama lain oleh cabang – cabang muscular. Serat mulai berkontraksi pada embrio sebelum saraf mencapainya, dan terus berkontraksi secara ritmis bahkan bila tidak memperoleh inervasi.
Endocardium
Endocardium melapisi bagian dalam rongga jantung dan menutupi katup pada kedua sisinya. Terdiri dari selapis sel endotel, di bawahnya terdapat lapisan jaringan ikat, licin dan mengkilat.
Pericardium
Pericardium adalah kantong fibrosa yang menutupi seluruh jantung. Pericardium merupakan kantong berlapis dua, kedua lapisan saling bersentuhan dan saling meluncur satu sama lain dengan bantuan cairan yang mereka sekresikan dan melembabkan permukaannya. Jumlah cairan yang ada normal sekitar 20 ml. Pada dasar jantung (tempat pembuluh darah besar, limfatik, dan saraf memasuki jantung) kedua lapisan terus berlanjut. Terdapat lapisan lemak di antara myocardium dan lapisan pericardium di atasnya.
Arteria Coronaria
Kedua arteria coronaria, kanan dan kiri, menyuplai darah untuk dinding jantung. Arteri ini keluar dari aorta tepat di atas katup aorta dan berjalan ke bawah masing – masing pada permukaan sisi kanan dan kiri jantung, memberikan cabang ke dalam untuk myocardium. Arteri ini menyuplai masing – masing sisi jantung tetapi memiliki variasi individual dan pada beberapa orang, arteria coronaria dextra menyuplai sebagian ventrikel kiri. Arteri ini memiliki relatif sedikit anastomosis antara arteria dextra dan sinistra.
Siklus Jantung
Siklus jantung adalah urutan kejadian dalam satu denyut jantung. Siklus ini terjadi dalam dua fase yaitu :
? Diastole
Diastole adalah periode istirahat yang mengikuti periode kontraksi. Pada awalnya :
1. Darah vena memasuki atrium kanan melalui vena cava superior dan inferior.
2. Darah yang teroksigenasi melewati atrium kiri melalui vena pulmonalis.
3. Kedua katup atrioventikular (tricuspidalis dan mitralis) tertutup dan darah dicegah untuk memasuki atrium ke dalam ventrikel.
4. Katup pulmonalis dan aorta tertutup, mencegah kembalinnya darah dari arteria pulmonalis ke dalam ventrikel kanan dan dari aorta ke dalam ventrikel kiri.
5. Dengan bertambah banyaknya darah yang memasuki kedua atrium, tekanan di dalamnya meningkat dan ketika tekanan di dalamnya lebih besar dari ventrikel, katup AV terbuka dan darah mulai mengalir dari atrium ke dalam ventrikel.
? Sistole
Sistole adalah periode kontraksi otot, berlangsung selama 0,3 detik.
1. Dirangsang oleh nodus sino-atrial, dinding atrium berkontraksi, memeras sisa darah dari atrium ke dalam ventrikel.
2. Ventrikel melebar untuk menerima darah dari atrium dan kemudian mulai berkontraksi.
3. Ketika tekanan dalam ventrikel melebihi tekanan dalam atrium, katup AV menutup, chordae tendinea mencegah katup terdorong ke dalam atrium.
4. Ventrikel teruss berkontraksi. Katup pulmonalis dan aorta membuka akibat peningkatan tekanan ini.
5. Darah menyembur keluar dari ventrikel kanan ke dalam arteria pulmonalis dan darah dari ventrikel kiri menyembur ke dalam aorta.
6. Kontraksi otot kemudian berhenti dan dengan dimulainya relaksasi otot, siklus baru dimulai.
Setiap kontraksi diikuti periode refrakter absolut yang singkat saat tidak ada stimulus yang dapat menghasilkan kontraksi, dan diikuti periode refrakter relatif yang singkat saat kontraksi membutuhkan stimulus yang kuat.
Denyut Jantung
Nodus sino-atrial (nodua SA atau pacemaker jantung) adalah daerah kecil serat otot dan sel saraf yang terletak pada dinding jantung di dekat tempat masuk vena cava superior. Pada awalnya sistole, gelombang kontraksi mulai pada nodus ini dan menyebar melalui dinding kedua atrium, merangsang atrium untuk berkontraksi, kontraksi atrium ini tidak menyebar ke ventrikel karena tidak dapat melalui cincin jaringan ikat yang memisahkan atrium dari ventrikel, mencapai dan merangsang nodus atrioventrikularis.
Nodus atrioventrikularis (nodus AV) adalah daerah kecil jaringan khusus di dalam dinding di antara atrium kanan dan ventrikel kanan. Berkas atrioventrikularis (berkas His) adalah pita otot dan serat saraf yang berjalan pada septum di antara kedua ventrikel, mencapai apeks jantung dan di bagi menjadi dua cabang utama, satu untuk tiap ventrikel yang terbagi menjadi beberapa cabang kecil di dalam dinding ventrikel. Gelombang kontraksi menyebar dari nodus AV ke bawah ke berkas AV dan set off kontraksi kedua ventrikel secara simultan. Gelombang kontraksi yang dimulai pada nodus SA menyebabkan atrium berkontraksi tepat sebelum ventrikel karena gelombang segera mencapai atrium dan gelombang yang menuju ventrikel harus melalui berkas AV.
Curah Jantung
Curah jantung bergantung pada :
? Frekuensi denyut jantung
Saat istirahat biasanya sekitar 70 kali per menit. Frekuensi denyut jantung dikontrol terutama oleh reduksi dalam stimulasi melalui serat nervus parasimpatis (vagus), pengaruh yang lebih kecil oleh stimulasi melalui serat nervus simpatis.
? Curah sekuncup
Curah sekuncup adalah jumlah darah yang keluar dari ventrikel pada setiap denyut. Saat istirahat biasanya sekitar 70 ml. Pada latihan ringan meningkat sampai 125 ml. Pada awal kontraksi ventrikel, dengan tubuh dalam keadaan istirahat mengandung sekitar 120 ml. Sekitar 50 ml berasal dari ventrikel kiri pada setiap denyutnya.
Curah sekuncup dikontrol oleh perubahan panjang serat otot jantung. Makin panjang (pada otot yang salah) makin besar kontraksinya. Ketika lebih banyak darah memasuki jantung (seperti pada latihan), makin besar kontraksi dan dengan demikian makin besar curah sekuncup.
Curah jantung diukur dengan mengukur jumlah oksigen yang diambil oleh paru per menit, dan berbagai teknik dilusi dengan zat pewarna, isotop radioaktif, dll.
BAB II
Elektrokardiogram
A. Pengertian
Elektrokardiogram (EKG atau ECG) adalah grafik yang merekam perubahan potensial listrik jantung yang dihubungkan dengan waktu. Elektrodiografi adalah ilmu yang mempelajari perubahan-perubahan potensial atau perubahan voltage yang terdapat dalam jantung.
Penggunaan EKG dipelopori oleh Einthoven pada tahun 1903 dengan menggunakan Galvanometer. Galvanometer senar ini adalah suatu instrumen yang sangat peka sekali yang dapat mencatat perbedaan kecil dari tegangan (milivolt) pada jantung.
Beberapa tujuan dari penggunaan EKG dapat kegunaan :
1. Untuk mengetahui adanya kelainan-kelainan irama jantung/disritmia
2. Kelainan-kelainan otot jantung
3. Pengaruh/efek obat-obat jantung
4. Ganguan -gangguan elektrolit
5. Perikarditis
6. Memperkirakan adanya pembesaran jantung/hipertropi atrium dan ventrikel
7. Menilai fungsi pacu jantung.
B. Sistem Konduksi Jantung
Sebelum kita membahas mengenai penggunaan EKG, terlebih dahulu kita mengetahui sistem konduksi (listrik jantung) yang berperan dalam pencatatan pada EKG, yang terdiri dari :
1. SA Node ( Sino-Atrial Node )
Terletak dibatas atrium kanan (RA) dan vena cava superior (VCS). Sel-sel dalam SA Node ini bereaksi secara otomatis dan teratur mengeluarkan impuls (rangsangan listrik) dengan frekuensi 60 - 100 kali permenit kemudian menjalar ke atrium, sehingga menyebabkan seluruh atrium terangsang
2. AV Node (Atrio-Ventricular Node)
Terletak di septum internodal bagian sebelah kanan, diatas katup trikuspid. Sel-sel dalam AV Node dapat juga mengeluar¬kan impuls dengan frekuensi lebih rendah dan pada SA Node yaitu : 40 - 60 kali permenit. Oleh karena AV Node mengeluarkan impuls lebih rendah, maka dikuasai oleh SA Node yang mempunyai impuls lebih tinggi. Bila SA Node rusak, maka impuls akan dikeluarkan oleh AV Node.
3. Berkas His
Terletak di septum interventrikular dan bercabang 2, yaitu :
1. Cabang berkas kiri ( Left Bundle Branch)
Gambar 1. Sistem Penjalaran Konduksi Jantung
2. Cabang berkas kanan ( Right Bundle Branch )
Setelah melewati kedua cabang ini, impuls akan diteruskan lagi ke cabang-cabang yang lebih kecil yaitu serabut purkinye.
4. Serabut Purkinye
Serabut purkinye ini akan mengadakan kontak dengan sel-sel ventrikel. Dari sel-sel ventrikel impuls dialirkan ke sel-sel yang terdekat sehingga seluruh sel akan dirangsang. Di ventrikel juga tersebar sel-sel pace maker (impuls) yang secara otomatis mengeluarkan impuls dengan frekuensi 20 - 40 kali permenit.
C. Bentuk Gelombang dan Interval EKG
Pada EKG terlihat bentuk gelombang khas yang disebut P, QRS, dan T, sesuai dengan penyebaran eksitasi listrik dan pemulihannya melalui sistem hantaran dan miokardium. Gelombang – gelombang ini direkam pada kertas grafik dengan skala waktu horisontal dan voltase vertikal. Makna bentuk gelombang dan interval pada EKG adalah sebagai berikut :
1. Gelombang P
Sesuai dengan depolarisasi atrium. Rangsangan normal untuk depolarisasi atrium berasal dari nodus sinus. Namun, besarnya arus listrik yang berhubungan dengan eksitasi nodus sinus terlalu kecil untuk dapat terlihat pada EKG. Gelompang P dalam keadaan normal berbentuk melengkung dan arahnya ke atas pada kebanyakan hantaran.
Pembesaran atrium dapat meningkatkan amplitudo atau lebar gelombang P, serta mengubah bentuk gelombang P. Disritmia jantung juga dapat mengubah konfigurasi gelombang P. misalnya, irama yang berasal dari dekat perbatasan AV dapat menimbulkan inversi gelombang P, karena arah depolarisasi atrium terbalik.
2. Interval PR
Diukur dari permulaan gelombang P hingga awal kompleks QRS. Dalam interval ini tercakup juga penghantaran impuls melalui atrium dan hambatan impuls melalui nodus AV. Interval normal adalah 0,12 sampai 0,20 detik. Perpanjangan interval PR yang abnormal menandakan adanya gangguan hantaran impuls, yang disebut bloks jantung tingkat pertama.
3. Kompleks QRS
Menggambarkan depolarisasi ventrikel. Amplitudo gelombang ini besar karena banyak massa otot yang harus dilalui oleh impuls listrik. Namun, impuls menyebar cukuop cepat, normalnya lamanya komplek QRS adalah antara 0,06 dan 0,10 detik. Pemanjangan penyebaran impuls melalui berkas cabang disebut sebagai blok berkas cabang (bundle branch block) akan melebarkan kompleks ventrikuler. Irama jantung abnormal dari ventrikel seperti takikardia juga akan memperlebar dan mengubah bentuk kompleks QRS oleh sebab jalur khusus yang mempercepat penyebaran impuls melalui ventrikel di pintas. Hipertrofi ventrikel akan meningkatkan amplitudo kompleks QRS karena penambahan massa otot jantung. Repolasisasi atrium terjadi selama massa depolarisasi ventrikel. Tetapi besarnya kompleks QRS tersebut akan menutupi gambaran pemulihan atrium yang tercatat pada elektrokardiografi.
Gambar 2. Gelombang Normal pada EKG
4. Segmen ST
Interval ini terletak antara gelombang depolarisasi ventrikel dan repolarisasi ventrikel. Tahap awal repolarisasi ventrikel terjadi selama periode ini, tetapi perubahan ini terlalu lemah dan tidak tertangkap pada EKG. Penurunan abnormal segmen ST dikaitkan dengan iskemia miokardium sedangkan peningkatan segmen ST dikaitkan dengan infark. Penggunaan digitalis akan menurunkan segmen ST.
5. Gelombang T
Repolarisasi ventrikel akan menghasilkan gelombang T. Dalam keadaan normal gelombang T ini agak asimetris, melengkung dan ke atas pada kebanyakan sadapan. Inversi gelombang T berkaitan dengan iskemia miokardium. Hiperkalemia (peningkatan kadar kalium serum) akan mempertinggi dan mempertajam puncak gelombang T.
Gambar 3. Variasi Kompleks QRS
6. Interval QT
Interval ini diukur dari awal kompleks QRS sampai akhir gelombang T, meliputi depolarisasi dan repolarisasi ventrikel. Interval QT rata – rata adalah 0,36 sampai 0, 44 cdetik dan bervariasi sesuai dengan frekuensi jantung. Interval QT memanjang pada pemberian obat – obat antidisritmia seperti kuinidin, prokainamid, sotalol (betapace) dan amiodaron (cordarone).
D. Sadapan Listrik
Arus listrik yang dihasilkan dalam jantung selama depolarisasi dan repolarisasi akan dihantarkan ke seluruh permukaan tubuh. Muatan listrik tersebut dapat dicatat menggunakan elektroda yang ditempelkan pada kulit.
Sesuai perjanjian, maka elektroda pencatat di pasang pada ekstremitas dan dinding dada, dan sebuah elektroda yang dipasang pada bumi yang bertujuan mengurangi gangguan listrik, dipasang pada tungkai kanan.
Berbagai kombinasi – kombinasi dari elektroda ini akan menghasilkan 12 sadapan standar. Masing – masing sadapan mencatat peristiwa listrik dari seluruh siklus jantung, namun masing – amsing hantaran meninjau jantung dari sudut pandanagn yang agak berbeda. Oleh karena itu, bentuk gelombang yang dibentuk oleh sadapan yang terbentuk sedikit berbeda. Pada umumnya dirancang tiga kategori sadapan :
1. Sadapan standar anggota tubuh (sadapan I, II, dan III)
Sadapan ini mengukur opotensial listrik antara dua titik, sehingga sadapan ini bersifat bipolar, dengan satu kutub negatif dan satu kutub positif. Elektroda ditempatkan pada lengan kanan, lengan kiri, dan tungkai kiri. Sadapan I melihat jantung dari sumbu yang menghubungkan lengan kanan dan lengan kiri, dengan lengan kiri sebagai kutub positif. Sadapan II dari lengan kanan dan tungkai kiri, dengan tungkai kiri positif. Sedangkan, sadapan III dari lengan kiri dan tungkai kiri dengan tungkai kiri positif.
2. Sadapan anggota badan yang diperkuat (aVR, aVL, aVF)
Hantaran ini disesuaikan secara elektris untuk mengukur potensial listrik absolut pada satu tempat pencatatan, yaitu dari elektroda positif yang ditempatkan pada ekstremitas dengan demikian merupakan suatu sadapan unipolar. Keadaan ini dicapai dengan menghilangkan efek kutub negatif secara elektris dan membentuk suatu elektroda “indiferen” pada potensial nol.
EKG secara otomatis akan mengadakan penyesuaian untuk menghubungkan elsktroda anggota badan lainnya sehingga membentuk suatu elektroda indiferen yang pada hekekatnya tidak akan mempengaruhi elektroda positif. Voltase yang tercatat pada elektroda positif lalu diperkuat atau diperbesar untuk menghasilkan sadapan ekstremitas unipolar. Terdapat tiga sadapan anggota tubuh yang diperbesar, aVR mencatat lengan kanan, aVL mencatat lengan kiri, dan aVF memcatat tungkai kiri (lokasi aVF dapat dengan mudah diingat dengan lokasi huruf F dengan kata foot (kaki)).
3. Sadapan prekordial atau dada (V1 hinggan V6)
Merupakan sadapan unipolar yang mencatatpotensial listrik absolut pada dinding dada anterior atau prekordium. Identifikasi petunjuk – petunjuk berikut mempermudah meletakkan prekordial dengan tepat :
- Sudut Louis yaitu tonjolan tulang dada pada sambungan antara manubrium dan korpus sterni.
- Ruang sela iga kedua, berdekatan dengan sudut Louise.
- Linea midklavikularis kiri
- Linea aksilaris anterior dan midaksilaris
Elektroda di pasang berurutan pasa enam tempat berbeda pada dinding dada :
­ V1 : pada sela iga keempat sebelah kanan dari sternum
­ V2 : pada sela iga keempat sebelah kiri dari sternum
­ V3 : pada pertengan antara V2 dan V4
­ V4 : pada sela iga kelima di garis mid-klavikularis
­ V5 : horisontal terhadap V4, pada garis aksilaris anterior
­ V6 : horisontal terhadap V5, pada garis mid aksilaris.
Sadapan standar anggota badan dan sadapan anggota badan yang diperkuat melihat jantung dari bidang frontal. Perspektif relatif dari setiap sadapan paling mudah dikonsepkan dengan menggunakan suatu diagram skematik yang disebut sistem acuam enam sumbu. Sistem acuan ini diperoleh dengan cara sebagai berikut :
1. Hubungkan sumbu dari I, II, dan III sehingga membentuk segitiga sama sisi yang disebut segitiga einthoven. Jantungnya dianggap sebagai pusat listrik segitiga tersebut.
2. Tempatkan sumbu sadapan sedemikian rupa sehingga masing – masing memancar dari pusat segitiga dan membetuk diagram kedua yang dikenal dengan sistem acuan tiga sumbu.
3. Gabungkan diagram sistem acuan tiga sumbu dengan represenatsi skematik dari sadapan anggota badan yang diperkuat, yang emmancar dari pusat listrik dari toraks, dan menghasilkan sistem acuan enam sumbu.
Sistem acuan enam sumbu merupakan atal bantu yang sangat berharga dalam menginterpretsi hasil EKG, memungkinkan perhitungan arah rata – rata aktivitas listrik dalam jantung. Arah rata – rata aktivitas listrik yang dihitung dari EKG dikenal sebagai sumbu listrik jantung.
E. Perjalaran Listrik (Konduksi)
Impuls listrik meninggalkan SA node menuju Atrium kanan dan kiri. hingga kedua atrium bisa berkontraksi dalam waktu yang sama. Proses ini memakan waktu 0,4 detik. Pada saat Atrium kanan dan kiri berkontraksi, ventrikel akan terisi darah Impuls lstrik kemudian kembali mengalir ke Atrioventricular Node (AV node) yang kemudian disebarkan ke kumpulan serabut yang berada disebalah kanan dan kiri jantung sampai ke serat Purkinje yang berada di Ventrikel kanan dan kiri jantung hingga membuat kedua Ventrikel berkontraksi bersamaan.
Seluruh jaringan listrik pada jantung mampu menghasilkan impuls listrik. Namun SA node memiliki kemamapuan yang paling besar. Apabila SA node gagal untuk menghasilkan impuls, maka fungsinya bisa saja digantikan oleh jaringan lainnya, meskipun impllsnya cenderung lebih rendah. Pencetus listrik pada jantung memang mampu mengakomodir kebutuhan jantung untuk mampu berkontraksi terus dalma rentang waktu yang panjang. Terdapat serabut syaraf yang mampu mengubah arus listrik yang dihasilkan serta membuat perbuahan pada kekuatan kontraksi jantung. Syaraf yang dimaksud adalah bagian dari susunan syaraf otonom. Susunan syaraf otonom sendiri terdiri dari 2 bagian : Sistim Syaraf Simpatik dan Sistim Syaraf Parasimpatik.
Sistim syaraf simpatik mampu meningkatkan pacu jantung dan kekuatan kontraksi, sementara sistim syaraf simpatik berfungsi sebaliknya. Seluruh sistim produksi listrik ini bisa kita pantau dan bisa diukur. Pengukuran ini biasanya dilakukan dengan Electrocardiogram (EKG) yang menghasilkan sebuh grafik.
F. Cara Pemeriksaan
1. Persiapan Alat-alat EKG.
a. Mesin EKG yang dilengkapi dengan 3 kabel, sebagai berikut :
b. Satu kabel untuk listrik (power)
c. Satu kabel untuk bumi (ground)
d. Satu kabel untuk pasien, yang terdiri dari 10 cabang dan diberi tanda dan warna.
e. Plat elektrode yaitu
f. 4 buah elektrode extremitas dan manset
g. 6 Buah elektrode dada dengan balon penghisap.
h. Jelly elektrode / kapas alkohol
i. Kertas EKG (telah siap pada alat EKG) dan kertas tissue
Gambar 4. Lead-lead Bidang Horizontal Prekordial
2. Persiapan Pasien
a. Pasien diberitahu tentang tujuan perekaman EKG
b. Pakaian pasien dibuka dan dibaringkan terlentang dalam keadaan tenang selama perekaman.
G. Cara Menempatkan Elektrode
Sebelum pemasangan elektrode, bersihkan kulit pasien di sekitar pemasangan manset, beri jelly kemudian hubungkan kabel elektrode dengan pasien.
1. Elektrode extremitas atas dipasang pada pergelangan tangan kanan dan kiri searah dengan telapak tangan.
2. Pada extremitas bawah pada pergelangan kaki kanan dan kiri sebelah dalam.
3. Posisi pada pengelangan bukanlah mutlak, bila diperlukan dapatlah dipasang sampai ke bahu kiri dan kanan dan pangkal paha kiri dan kanan.
Kemudian kabel-kabel dihubungkan :
? Merah (RA / R) lengan kanan
? Kuning (LA/ L) lengan kiri
? Hijau (LF / F ) tungkai kiri
? Hitam (RF / N) tungkai kanan (sebagai ground)
Hasil pemasangan tersebut terjadilah 2 sandapan (lead)
1. Sandapan bipolar (sandapan standar) dan ditandai dengan angka romawi I, II, III.
2. Sandapan Unipolar Extremitas (Augmented axtremity lead) yang ditandai dengan simbol aVR, aVL, aVF.
3. Pemasangan elektroda dada (Sandapan Unipolar Prekordial), ini ditandai dengan huruf V dan disertai angka di belakangnya yang menunjukkan lokasi diatas prekordium, harus dipasang pada :
VI : sela iga ke 4 garis sternal kanan
V2 : sela iga ke 4 pada garis sternal kiri
V3 : terletak diantara V2 dan V4
V4 : ruang sela iga ke 5 pada mid klavikula kiri
V5 : garis aksilla depan sejajar dengan V4
V6 : garis aksila tengah sejajar dengan V4
Sandapan tambahan
V7 : garis aksila belakang sejajar dengan V4
V8 : garis skapula belakang sejajar dengan V4
V9 : batas kin dan kolumna vetebra sejajar dengan V4
V3R - V9R posisinya sama dengan V3 - V9, tetapi pada sebelah kanan.
Jadi pada umumnya pada sebuah EKG dibuat 12 sandapan (lead) yaitu
I , II, III, aVR, aVL, aVF, VI, V2, V3, V4, V5, V6. Sandapan yang lain dibuat bila perlu. Lokasi permukaan otot jantung dapat dilihat pada EKG, seperti :
1. Anterior : V2, V3, V4
2. Septal : aVR, V1, V2
3. Lateral : I, aVL, V5, V6
4. Inferior : II, III, aVF
Aksis terletak antara : - 30 sampai + 110 (deviasi aksis normal)
Lebih dari – 30 : LAD (deviasi aksis kiri)
Lebih dari dari + 110 : RAD (deviasi aksis kanan)
H. Cara Merekam EKG
1. Hidupkan mesin EKG dan tunggu sebentar untuk pemanasan.
2. Periksa kembali standarisasi EKG antara lain :
a. Kalibrasi 1 mv (10 mm)
b. Kecepatan 25 mm/detik
Setelah itu lakukan kalibrasi dengan menekan tombol run/start dan setelah kertas bergerak, tombol kalibrasi ditekan 2 -3 kali berturut-turut dan periksa apakah 10 mm
3. Dengan memindahkan lead selector kemudian dibuat pencatatan EKG secara berturut-turut yaitu sandapan (lead) I, II, III, aVR, aVL, aVF, VI, V2, V3, V4, V5, V6. Setelah pencatatan, tutup kembali dengan kalibrasi seperti semula sebanyak 2-3 kali, setelah itu matikan mesin EKG
4. Rapikan pasien dan alat-alat.
a. Catat di pinggir kiri atas kertas EKG
b. Nama pasien
c. Umur
d. Tanggal/Jam
e. Dokter yang merawat dan yang membuat perekaman pada kiri bawah
5. Dibawah tiap lead, diberi tanda lead berapa, perhatian
Perhatian !
1. Sebelum bekerja periksa dahulu tegangan alat EKG.
2. Alat selalu dalam posisi stop apabila tidak digunakan.
3. Perekaman setiap sandapan (lead) dilakukan masing - masing 2 - 4 kompleks
4. Kalibrasi dapat dipakai gambar terlalu besar, atau 2 mv bila gambar terlalu kecil.
5. Hindari gangguan listrik dan gangguan mekanik seperti ; jam tangan, tremor, bergerak, batuk dan lain-lain.
6. Dalam perekaman EKG, perawat harus menghadap pasien.
I. Cara Membaca EKG
Ukuran-Ukuran pada kertas EKG
Pada perekaman EKG standar telah ditetapkan yaitu :
1. Kecepatan rekaman 25 mm/detik (25 kotak kecil)
2. Kekuatan voltage 10 mm = 1 millivolt (10 kotak kecil)
Jadi ini berarti ukuran dikertas EKG adalah
1. Pada garis horisontal
• Tiap satu kotak kecil = 1 mm = 1/25 detik = 0,04 detik
• Tiap satu kotak sedang = 5 mm = 5/25 detik = 0,20 detik
• Tiap satu kotak besar = 25 mm = 25125” = I ,00 detik
2. pada garis vertikal
• 1 kotak kecil = 1 mm =0.1 mv
• 1 kotak sedang = 5 mm = 0,5 mv
• 2 kotak sedang = 10 mm= I milivolt
J. Cara Menghitung EKG
Kecepatan EKG adalah 25 mm / detik. Satu menit = 60 detik, maka kecepatan EKG dalam 1 menit yaitu 60 x 25 = 1500 mm.
Satu kotak kecil panjangnya = 1mm.
Satu kotak sedang (5 kotak kecil) : 1500 / 5 = 300 mm
Gambar 6. Kertas EKG
Cara menghitung denyut nadi permenit ada 5 cara yaitu :
1. 1500
Jarak 2 RR (kotak kecil)
2. 300
Jarak 2 RR (kotak sedang)
3. 60 (1 menit)
Jarak 2 RR (dalam detik)
4. Jumlah PQRS dalam 6 detik x 10
5. Penggaris EKG.
K. Nilai-Nilai EKG Normal
1. Gelombang P yaitu depolarisasi atrium.
a. Nilai-normal ; lebar <>
b. tinggi <0,25>
c. bentuk (+ ) di lead I, II, aVF, V2 - V6
d. (-) di lead aVR
e. + atau - atau + bifasik ( ) di lead III, aVL, V1
2. Kompleks QRS yaitu depolarisasi dan ventrikel, diukur dari permulaan gelombang QRS sampai akhir gelombang QRS Lebar 0,04 - 0,10 detik
a. Gelombang Q yaitu defleksi pertama yang ke bawah (-) lebar 0,03 detik, dalam <1/3>
b. Gelombang R yaitu defleksi pertama yang keatas (+)
• Tinggi ; tergantung lead.
• Pada lead I, II, aVF, V5 dan V6 gel. R lebih tinggi (besar)
• Gel. r kecil di V1 dan semakin tinggi (besar) di V2 - V6.
c. Gel. S lebih besar pada VI - V3 dan semakin kecil di V4 - V6.
3. Gelombang T yaitu repolarisasi dan ventrikel
a. (+) di lead I, II, aVF, V2 - V6.
b. (-) di lead aVR.
c. (±) / bifasik di lead III, aVL, V1 (dominan (+) / positif)
4. Gelombang U ; biasanya terjadi setelah gel. T (asal usulnya tidak diketahui) dan dalam keadaan normal tidak terlihat.
L. Kriteria Interpretasi EKG
1. Frekuensi (Rate)
Frekuensi jantung ( HR ), normal ; 60- 100 x / menit. Adapun cara menentukan jumlah frekuensi/kecepatan permenit :
1. Untuk irama yang regular yaitu 1500 dibagi jumlah kotak kecil antan R-R (jarak dan R1 ke R2) = HR / menit
2. Untuk irama irreguler yaitu direkam EKG dalam 6 detik, hitung beberapa banyak kompleks QRS kemudian dikalikan 10 HR/ menit (jumlah R R dalam 6 detik dikali 10 H R / menit)
CATATAN Setiap EKG irregular (ARITMIA), rekam lead II panjang
2. Irama (Rhythm)
1. Bila teratur (reguler) dan gel. P selalu diikuti gel. QRS-T yakni normal disebut Sinus Ritme (irama sinus).
2. Bila irama cepat lebih dan 100 kali/menit disebut sinus tachikardi kurang dan 60 kali/menit disebut sinus bradikardi
3. Selain dan yang tersebut di atas adalah aritmia
3. Gelomibang P (P WAVE)
Diukur dan awal sampai akhir gel. P. Nilai normal ; lebar <0,11>tinggi <0,25>. Digunakan untuk kepentingan:
1. menandakan adanya aktivitas atrium
2. menunjukkan arah aktivitas atrium
3. menunjukkan tanda-tanda pembesaran atrium
4. P-R Interval
Diukur dan awal gel.P sampai dengan awal gel.QRS Nilai normal ; 0,12 - 0,20 detik. Digunakan untuk kepentingan:
1. Interval PR >0,20 detik : AV Block
2. Interval PR <0,12>3. Interval PR berubah-ubah : Wandering Pacemaker
5. Kompleks QRS
Pengukuran kompleks QRS ada 3 yang dinilai :
1. Lebar/interval : diukur dan awal sampai dengan akhir gel.QRS
Nilai normal : <0,10>Kepentingan : menandakan adanya Bundle Branch Block:
lebar 0,10 - 0,12 = Incomplete B B B.
Lebar >0,12 detik = Complete B B B.
2. AXIS ( sumbu )
Nilai normal : - 300 sampai + 1100
Cara menentukan axis yaitu dengan melihat 2 lead yang berbeda ekstremitas lead, yang terbaik adalah lead I & AVF. Kemudian tentukan jumlah aljabar dari amplitudo QRS di lead I dan aVF
tentukan di kwadrant mana vektor QRS berada. Adapun kepentingannya yakni 300 sampai 900 adalah L A D (Left Axis Deviation) dan + 1100 sampai 1800 adalah R A D (Right Axis Deviation)
3. Komfigurasi (bentuk)
Nilai normal :
Positif di lead I, II, aVF, V5, V6 ; Negatif di lead aVR, V1, V2
Bifasik di lead III, aVL, V3, V4, ( + / - ). Kepentingan mengetahui :
a. Q patologis
b. RAD/LAD
c. RVH/LVH
6. Segmen ST (ST Segment)
Diukur dari akhir gel.QRS (J Point) sampai awal gel. T
Nilai normal isoelektris (- 0,5 mm sampai + 2,5 mm)
Kepentingan:
Mengetahui kelainan pada otot jantung (iskemia dan infark)
7. Gelombang T (T Wave)
Ukurannya dari awal sampai dengan akhir gel. T. Nilai normal amplitudo (tinggi) : Minimum 1 mm. Adapun kepentingan:
1. Menandakan adanya kelainan otot jantung (iskemia/infark)
2. Menandakan adanya kelainan elektrolit.
Catatan:
1. Konfigurasi Gel. T Positif di lead I,II,aVF,V2-V6
2. Negatif di lead aVR
3. Bifasik di lead III, aVL, V1.Sistim Kelistrikan Pada Jantung
BAB III
Manifestasi Klinik
1. Pembesaran Atrium
Untuk mendiagnosis pembesaran atrium, lihat sadapan II dan V1
Pembesaran atrium kanan ditandai dengan hal-hal sebagai berikut :
a. Peningkatan amplitudo bagian pertama gelombang P.
b. Tidak ada perubahan durasi gelombang P.
c. Kemungkinan deviasi aksis ke kanan gelombang P.
Pembesaran atrium kiri ditandai dengan hal-hal berikut :
a. Amplitudo komponen terminal (negatif) gelombang P dapat meningkat, dan harus turun setidaknya 1 mm di bawah garis isoelektrik.
b. Durasi gelombang P meningkat dan lebar bagian terminal (negatif) gelombang P harus setidaknya 1 kotak kecil (0,04 detik).
c. Tidak ada deviasi aksis yang berarti karena atrium kiri normalnya mendominasi aliran listriknya.
2. Hipertrofi Ventrikel
Hipertrofi ventrikel kanan ditandai oleh hal-hal berikut :
a. Ada deviasi aksis ke kanan dengan aksis QRS melebihi =1000
b. Gelombang R lebih besar daripada gelombang S di V1, sedang gelombang S lebih besar daripada gelombang R di V6.
Hipertrofi ventrikel kiri ditandai dengan banyak kriteria. Dua yang paling berguna adalah sebagai berikut :
a. Gelombang R di V5 atau V6 plus gelombang S di V1 atau V2 melebihi 35 mm.
b. Gelombang R di aVL melebihi 13 mm.
3. Gangguan Elektrolit
a. Hiperkalemia : evolusi (1) gelombang T runcing, (2) perpanjangan PR dan gelombang P rata, serta (3) QRS melebar. Kompleks QRS dan gelombang T menyatu membentuk sebuah gelombang sinus.
b. Hipokalemia : depresi ST, gelombang T rata, gelombang U.
4. Infark Miokard
a. Secara akut gelombang T meruncing dan kemudian inverse. Perubahan gelombang T menggambarkan iskemia miokardium.
b. Secara akut segmen ST mengalami elevasi dan menyatu dengan gelombang T. Elevasi segmen ST menggambarkan jejas miokardium.
c. Gelombang-gelombang Q baru bermunculan dalam beberapa jam sampai beberapa hari. Gelombang ini menandakan infark miokard.
Daftar Pustaka
1. Gibson, Jhon. 2002. Fisiologi dan Anatomi Modern untuk Perawat edisi 2. EGC: Jakarta.
2. Harrison.2000.Prinsip-prinsip Ilmu Penyakit Dalam Edisi 13.EGC:Jakarta.
3. Imelda.---.Elektrokardiografi.RS.Husada.
4. Nhlbi.2007.What is an Electrocardiogram?www.nhlbi.nih.gov/health /dci/Diseases/ekg/ekg_what.html.
5. Noname.2003.Sistem Kelistrikan pada Jantung.
http://72.14.235.104/search?q=cache:mRE1IuKGU9gJ:www.indosiar.com/v2003/...
6. Noname.2007.Elektrokardiografi.http://image.google.co.id/image/hl-id&q
7. Noname.2007.Pemeriksaan Elektrokardiogram.http://www.pjnhk.go.id
8. Ogadisca.2007. Elektrokardiogram (EKG)
http://ogibadisca.blogspot.com/2007/08/artikel-keperawatan.html
9. Sherwood,Lauralee.2001.Fisiologi Manusia Edisi 2 ;dari Sel ke Sistem.EGC:Jakarta.
10. Thaler,Malcom S.2000.Satu-satunya buku EKG yang Anda Perlukan Edisi 2; Alih Bahasa Samik Wahab.Hipokrates:Jakarta.